UUCMS. No. \square

B.M.S COLLEGE FOR WOMEN, AUTONOMOUS
 BENGALURU - 560004
 SEMESTER END EXAMINATION - SEPT/OCTO-2023

M.Sc. in Mathematics-2 ${ }^{\text {nd }}$ Semester
 ALGEBRA -II

Course Code: MM201T

Duration: 3 Hours

QP Code: 12001
Max marks: 70

Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.

1. (a)Define (i) Nil radical $N(A)$, (ii) Jacobson radical $J(A)$ of a A. Prove that $x \in J(A)$ if and only if $1-x y$ is a unit in A for all $x \in A$.
(b) Define extension and contraction of ideals with respect to a ring. If C denote the set of all contracted ideals I of A and E denotes the set of all extended ideals J of B then show that $C=\left\{I: I^{e c}=I\right\}$ and $E=\left\{J: J^{c e}=J\right\}$.
(c) Explain the following (i) Operations on ideals. (ii) Prime spectrum of a ring A with suitable example for each.
2. (a) Show that the sub module of a unital R module M generated by a subset S of M consists of all linear combination of elements in S.
(b) State and prove fundamental theorem of Homomorphism on Modules.
(c) (i) Prove that the kernel of a homomorphism is a sub module.(ii) Prove that the range of a homomorphism is a sub module.
3. (a) State and prove Nakayama Lemma.
(b) Define a simple module. Show that an A-module M is simple if and only if $\quad M \cong \frac{A}{I}$ as for some maximal ideal I of A.
4. (a) Prove that A-module M is of finite length if and only if it is both Noetherian and Artinian.
(b) Prove that a commutative ring with identity is Noetherian if and only strictly ascending chain of ideals is of finite length.
5. (a) Define an algebraic extension of a field. If L is an algebraic extension of K and K is an algebraic extension of F then prove that L is an algebraic extension of F.
(b) Prove that the elements in an extension K of a field F which are algebraic over F form a subfield of K.
(c) Let $a=\sqrt{2}, b=\sqrt[4]{2}$, where R is an extension of Q. Verify that $(a+b)$ and $(a b)$ are algebraic of degree atmost $(\operatorname{deg} a)(\operatorname{deg} b)$.
6. (a) Show that it is impossible to construct a heptagon .
(b) Let $T: F \rightarrow F^{\prime}$ be an isomorphism given by $\alpha T=\alpha^{\prime}, \forall \alpha \in F$. Then prove that $T^{*}: F[x] \rightarrow F^{\prime}[t]$ is a continuation isomorphism of T.
(c) Determine the splitting field of $x^{4}-2$ over Q .
$(5+5+4)$
7. (a) Show that the polynomial $f(x) \in F[x]$ has multiple roots if and only if $f(x)$ and $f^{\prime}(x)$ have a non-trivial common factors.
(b) Prove that any finite extension of a field of characteristic 0 is simple extension.
(c) Show that any field of characteristic 0 is perfect field.
$(6+4+4)$
8. (a) Define normal extension of a field. Prove that an extension K of a field F of degree two is normal.
(b) Define a fixed field. Let G be a sub group of group of automorphisms of a field K. Then show that fixed field of G is a sub field of K.
(c) If K is a finite extension of a field and if $G(K ; F)$ is the group of all automorphisms of F then prove that $G(K ; F)$ is finite and $O(G(K, F)) \leq[K: F]$.
